FEMA P-58-7

Building the Performance You Need

State-of-the-Art Tools for Seismic Design & Assessment
FEMA P-58-7: Building the Performance You Need

Structure
25% of building value

75% of building value
PACT: Performance Assessment Calculation Tool
Next Generation Assessment Process

- Probable consequences and explicit consideration of uncertainty
 - Casualties
 - Repair costs
 - Repair time
 - Unsafe placarding
 - Environmental Impacts
OPTIONS FOR EARTHQUAKE RESISTANT DESIGN
Design Decisions Have Measurable Consequences

Consequences Under Major Earthquake

<table>
<thead>
<tr>
<th>Casualty Risks</th>
<th>Chance of Post-EQ Placard</th>
<th>Expected Building Downtime</th>
<th>Initial Building Cost</th>
<th>Repair Cost</th>
<th>Carbon Impacts of Repairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moderate EQ: 2% chance in 50 years
Major EQ: 10% chance in 50 years
Extreme EQ: 2% chance in 50 years

New Buildings
- Protective System
- Enhanced Code*
- Basic Code
- Basic Retrofit**
- Unretrofitted

Older Buildings

bigger EQs

FEMA P-58-7: Building the Performance You Need
OPTIONS FOR EARTHQUAKE RESISTANT DESIGN
Design Decisions Have Measurable Consequences

Consequences Under Major Earthquake

Casualty Risks	Chance of Post-EQ Placard	Expected Building Downtime	Initial Building Cost	Repair Cost	Carbon Impacts of Repairs

New Buildings

- Moderate EQ
 - 2% chance in 50 years
- Major EQ
 - 10% chance in 50 years
- Extreme EQ
 - 2% chance in 50 years

Enhanced Code*

Basic Code

Basic Retrofit**

Older Buildings

- Unretrofitted

FEMA P-58-7: Building the Performance You Need
OPTIONS FOR EARTHQUAKE RESISTANT DESIGN
Design Decisions Have Measurable Consequences

Consequences Under Major Earthquake

<table>
<thead>
<tr>
<th>Casualty Risks</th>
<th>Chance of Post-EQ Placard</th>
<th>Expected Building Downtime</th>
<th>Initial Building Cost</th>
<th>Repair Cost</th>
<th>Carbon Impacts of Repairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Buildings

- Protective System
- Enhanced Code
- Basic Code

Older Buildings

- Basic Retrofit
- Unretrofitted

FEMA P-58-7: Building the Performance You Need
PACT: Performance Assessment Calculation Tool

Next Generation Assessment Process

Ground Motion

Structural Response

Damage

Fragility Spec

Building Performance Model

Consequences

FEMA P-58-7: Building the Performance You Need
Code Performance
Ductility is Damage
Design Space Approach
Defines parametric limits based on practical designs
Generic design space and representative

[Diagram showing a grid with points labeled as Stiffest/strongest considered design, Maximum drift, high lateral strength, Maximum stiffness, minimum lateral strength, Code minimum design, max. drift/min. strength, and Design Story Drift Ratio.]

FEMA P-58-7: Building the Performance You Need
FEMA P-58 Performance Results

- Repair costs (% rep.)
FEMA P-58 Performance Results

- Repair times (days)
Expected Code Performance

Table 6-1: Generalized Performance Expectations for Code-Conforming Buildings

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Performance Expectation</th>
<th>Design EQ</th>
<th>MCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Category IV – Office (Emergency Operations Center)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair Cost</td>
<td>5%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Repair Time</td>
<td>30 days</td>
<td>75 days</td>
<td></td>
</tr>
<tr>
<td>Casualty Rate</td>
<td>0.5%</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>Probability of Unsafe Placard</td>
<td>10%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Repairability</td>
<td>98%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Risk Category IV – Healthcare (Hospital)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair Cost</td>
<td>10%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Repair Time</td>
<td>45 days</td>
<td>100 days</td>
<td></td>
</tr>
<tr>
<td>Casualty Rate</td>
<td>0.5%</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>Probability of Unsafe Placard</td>
<td>10%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Repairability</td>
<td>95%</td>
<td>85%</td>
<td></td>
</tr>
</tbody>
</table>
tools for new design

Performance Estimation Tool (PET)

developed by Vesna Terzic, Ph.D.
CSU Longbeach
ATC-58-2 Performance Products Team
Performance Estimation Tool: PET

Preliminary design

Select strength and drift limits to meet performance objectives

- Probability of Unrepairable Permanent Drift
- Probability of Total Repairability
- Probability of Unsafe Placard
- Probability of Collapse
- Casualty Rate
PET Capabilities

Low-, mid-, and high-rise buildings

5 Lateral load-resisting systems

Office and Healthcare occupancies

Risk Categories II and IV

Three levels of seismic hazard w/ 5 shaking intensities

<table>
<thead>
<tr>
<th>Site Seismic Hazard</th>
<th>S_{gs}</th>
<th>S_{df}</th>
</tr>
</thead>
<tbody>
<tr>
<td>High SDC D</td>
<td>1.33g</td>
<td>0.75g</td>
</tr>
<tr>
<td>Medium SDC D</td>
<td>1.00g</td>
<td>0.6g</td>
</tr>
<tr>
<td>Low SDC D</td>
<td>0.50g</td>
<td>0.35g</td>
</tr>
</tbody>
</table>
Performance Objectives

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Design Earthquake</th>
<th>MCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Repair Cost</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>90th percentile Repair Cost</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Median Repair Time</td>
<td>30 days</td>
<td>60 days</td>
</tr>
<tr>
<td>90th percentile Repair Time</td>
<td>60 days</td>
<td>120 days</td>
</tr>
<tr>
<td>Probability of Unrepairable Permanent Drift</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>Probability of Unsafe Placard</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Probability of Collapse</td>
<td>2%</td>
<td>5%</td>
</tr>
</tbody>
</table>

5-story (Midrise), Office Building
Risk Category II
SDC D ($S_D^S = 1.00g$, $S_D^1 = 0.60g$)
90th percentile Loss Ratio - SRCSW

From PET:
SRCSW Office
RC II
Midrise
SDC D

<table>
<thead>
<tr>
<th>Loss Ratio (%)</th>
<th>20% MCE</th>
<th>40% MCE</th>
<th>67% MCE</th>
<th>80% MCE</th>
<th>100% MCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>0.4</td>
<td>4.7</td>
<td>11.1</td>
<td>17.7</td>
<td>34.7</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>0.2</td>
<td>3.7</td>
<td>9.2</td>
<td>11.4</td>
<td>15.1</td>
</tr>
<tr>
<td>Current Search</td>
<td>0.2</td>
<td>4.2</td>
<td>9.5</td>
<td>12.0</td>
<td>16.9</td>
</tr>
<tr>
<td>Representative Design</td>
<td>0.2</td>
<td>4.3</td>
<td>9.7</td>
<td>12.2</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Goal 10%: 9.2% ✓

Goal 20%: 11.1% NG

35% NG
Refine Design

Multiple of Minimum Base Shear

Design Story Drift

LEGEND

RDP
Range of Performance

CS
Current Search

RD
Representative Design

Casualty Rate (%)

Probability of Collapse vs. Intensity

Probability of Unreparable Permanent Drift vs. Intensity

Median Repair Time vs. Intensity

Median Loss, % Repl. Cost

FEMA P-58-7: Building the Performance You Need
Performance Objectives

Refine Design

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Design Earthquake</th>
<th>MCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Repair Cost</td>
<td>5% ✓ 4.6%</td>
<td>10% ✓ 9%</td>
</tr>
<tr>
<td>90th percentile Repair Cost</td>
<td>10% ✓ 9.8%</td>
<td>20% ✓ 15.7%</td>
</tr>
<tr>
<td>Median Repair Time</td>
<td>30 days ✓ 21</td>
<td>60 days ✓ 29</td>
</tr>
<tr>
<td>90th percentile Repair Time</td>
<td>60 days ✓ 33</td>
<td>120 days ✓ 43</td>
</tr>
<tr>
<td>Probability of Unrepairable Permanent Drift</td>
<td>1% ✓ 0%</td>
<td>3% ✓ 0%</td>
</tr>
<tr>
<td>Probability of Unsafe Placard</td>
<td>5% ✓ 0.1%</td>
<td>10% ✓ 5.2%</td>
</tr>
<tr>
<td>Probability of Collapse</td>
<td>2% ✓ 0%</td>
<td>5% ✓ 0.4%</td>
</tr>
</tbody>
</table>

Design Drift = 0.44%

Design Base Shear = 2.5 x (Minimum Base Shear)
Following Steps

Design the considered systems

Compare construction costs

Select the system

Perform final design

run PACT for best estimate of performance
Seat at the Table
Building the Performance You Need

State-of-the-Art Tools for Seismic Design & Assessment